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The effects of surface-active agents on drop deformation and breakup in extensional 
flows at low Reynolds numbers are described. In  this free-boundary problem, 
determination of the interfacial velocity requires knowledge of the distribution of 
surfactant, which, in turn, requires knowledge of the interfacial velocity field. We 
account for this explicit coupling of the unknown drop shape and the evolving 
surfactant distribution. An analytical result valid for nearly spherical distortions is 
presented first. Finite drop deformation is studied numerically using the boundary- 
integral method in conjunction with the time-dependent convective-diffusion 
equation for surfactant transport. This procedure accurately follows interfacial 
tension variations, produced by non-uniform surfactant distribution, on the evolving 
interface. The numerical method allows for an arbitrary equation of state relating 
interfacial tension to the local concentration of surfactant, although calculations are 
presented only for the common linear equation of state. Also, only the case of 
insoluble surfactant is studied. 

The analytical and numerical results indicate that a t  low capillary numbers the 
presence of surfactant causes larger deformation than would occur for a drop with a 
constant interfacial tension equal to the initial equilibrium value. The increased 
deformation occurs owing to surfactant being swept to the end of the drop where i t  
acts to  locally lower the interfacial tension, which therefore requires increased 
deformation to  satisfy the normal stress balance. However, a t  larger capillary 
numbers and finite deformations, this convective effect competes with ‘dilution ’ of 
the surfactant due to interfacial area increases. These two different effects of surface- 
active material are illustrated and discussed and their influence on the critical 
capillary number for breakup is presented. 

1. Introduction 
It is well-established that interfacial tension variations and/or interfacial viscosity 

and elasticity can have dramatic qualitative and quantitative effects on free-surface 
flows (Levich & Krylov 1969). For example, the drag on a small fluid sphere obeys 
Stokes law rather than the ideal Hadamard-Rybczynski result in all but very clean 
systems, bubbles are observed to migrate in a temperature gradient, and ocean waves 
may be damped by a thin oil film. Furthermore, it is clear that the effects of 
surfactants must be properly understood if the results of fundamental (model) 
problems are to be useful in real engineering applications. In  this paper, we study the 
effect of interfacial tension variations, due to surface-active agents, on the 
deformation and breakup of Newtonian drops in straining flows. 
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There have been many previous studies concerned with the effect of surfactants on 
buoyancy-driven motion of drops and bubbles in quiescent fluids. For example, i t  is 
observed that even a small amount of surfactant can reduce the terminal velocity of 
drops and reduce the rate of solute transport to or from drops. A valuable 
compendium related to this topic is the classic treatise on Physicochemical 
Hydrodynamics by Levich (1962). Additional theoretical analyses of diferent aspects 
of the translating drop problem have been discussed by Newman (1967), Haber & 
Hetsroni (1971), Saville (1973), LeVan & Newman (1976), and Holbrook & LeVan 
(1983a, b) .  A common assumption in all of these studies is that the drop remains 
spherical. The small, flow-induced steady deformation of a translating drop has been 
calculated by Sadhal & Johnson (1986). 

A major interest in our laboratory is the deformation and breakup of droplets due 
to extensional flows. This topic stems from G. I. Taylor’s classical experimental and 
theoretical studies (1932, 1934) that were motivated by an interest in emulsion 
formation. Much work has been performed in the interim, focusing mainly on drop 
deformation in the absence of interfacial tension gradients. For example, a number 
of authors have reported theoretical analyses for drop shapes in the near-sphere 
limit, and in the absence of interfacial tension gradients, e.g. Cox (1969) and Barthes- 
Biesel & Acrivos (1973). Numerical work has been reported by Rallison & Acrivos 
(1978), among others, on finite deformation in the absence of interfacial tension 
gradients. Related experimental studies are discussed by Mason & coworkers (e.g 
Rumscheidt & Mason 1961 and Torza, Cox & Mason 1972) and Bentley & Leal (1986). 
Two review articles describing much of this work have been written by Acrivos 
(1983) and Rallison (1984). 

More recently, we have undertaken a new comprehensive experimental and 
theoretical investigation of drop breakup a t  low Reynolds number under a wider 
range of flow conditions, but again in the absence of interfacial tension gradients 
(Stone, Bentley & Leal 1986 and Stone & Leal 1989). I n  all cases, interfacial tension 
effects play a critical role, and in many cases the breakup process is a consequence 
of interfacial-tension-driven motions due to curvature variations along the surface. 
An obvious question is how these phenomena are affected by Marangoni effects 
associated with surface tension gradients along the interface, or possibly by other 
interfacial properties such as surface viscosity. 

Unfortunately, the theoretical problem of finite drop deformation, incorporating 
dynamic interfacial properties, has received very little attention in the literature. To 
our knowledge, the only theoretical study that addresses the question of drop 
deformation in shear-type flows is due to Flumerfelt (1980). Flumerfelt examined the 
deformation and orientation of nearly spherical drops in simple shear and extensional 
flows, incorporating interfacial tension variations as well as effects due to surface 
shear and dilatational viscosity. Related experiments in simple shear flow are 
reported by Phillips, Graves & Flumerfelt (1980). However, because the work of 
Flumerfelt and coworkers is restricted to small deformations, i t  is difficult to extract 
information about drop breakup. Additional experiments reporting some qualitative 
observations of drop deformation in the presence of surfactants are reported by 
Smith & van de Ven (1985). 

This paper is concerned with finite deformation and breakup of drops, including 
interfacial tension gradients produced by non-uniform concentration of a surfactant. 
The great difficulty in treating this free-boundary problem stems from the a priori 
unknown location of the fluid-fluid interface. The presence of surfactants complicates 
matters further because their distribution is intimately coupled to the drop shape 
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and interface mobility, which in turn affect the time-dependent evolution of the drop 
shape. We first outline an analytical result valid for small drop deformations. Then, 
in order to study finite deformations, a numerical procedure based upon the 
boundary-integral method is described. This combined analytical and numerical 
study leads to improved physical insight into the effects of surfactants on drop 
dynamics in situations where finite deformation is important. 

It is interesting to note that dynamical effects and fluid motions produced by 
interfacial tension gradients have proven useful in fluid mechanical modelling of cell 
division and cell motion. Greenspan (1978) provides a vivid experimental illustration 
of drop breakup caused by surface tension variations along the interface, produced 
by the deliberate addition of a surfactant. Recently, Zinemanas & Nir (1988) 
discussed a more complete cell cleavage model incorporating active elements 
transported along the fluid interface and used a numerical procedure similar to the 
one reported here. 

2. Problem statement 
Consider a neutrally buoyant Newtonian liquid droplet of undeformed radius a ,  

and viscosity ,L, suspended in a second immiscible Newtonian fluid with viscosity p. 
Far from the drop the continuous phase undergoes a prescribed linear flow 
characterized by the shear rate G. The fluids are isothermal. The fluid-fluid interface 
is assumed to  be characterized completely by the interfacial tension u and all stresses 
associated with the rate of deformation of the interface (i.e. surface shear and 
dilatational viscosity) are neglected. The interfacial tension, though, may vary with 
position along the interface owing to the presence, of adsorbed surface-active 
material. The surfactant is assumed to be insoluble in either the droplet fluid or the 
suspending fluid so that convection and diffusion of surfactant in the bulk phases 
may be neglected. The case of insoluble surfactant corresponds to the physical 
situation where the surfactant has such an extremely low solubility in either of the 
bulk phases that i t  may be assumed to  reside only a t  the fluid-fluid interface. 
Therefore, with the exception of u, all fluid properties are treated as constants. 

We begin by assuming that the Reynolds numbers characterizing motion in both 
fluids are small so that inertia may be neglected completely and the quasi-steady 
Stokes equations apply for both fluid phases. This common low-Reynolds-number 
assumption is valid for the small drops typical of many industrial applications. In  
order to non-dimensionalize the governing equations and boundary conditions, we 
use the undeformed drop radius, a, as a characteristic lengthscale, the product Ga as 
a characteristic velocity, characteristic pressures for the drop and continuous phases 
are defined as $G and pG, respectively, and a characteristic timescale is G-l. The 
governing equations for the velocity and pressure fields ( u , p )  in the suspending fluid 
and in the droplet fluid (a,$) are 

I v2u = v p ,  V2d = W$, 
w-u = 0, V . d =  0. 

Relative to a coordinate system fixed to the centre of mass of the drop, the velocity 
field at large distances from the drop is taken t o  be a linear flow, u, = h x+ E - x .  
w and E are the vorticity vector and rate-of-strain tensor, respectively, for the 
undisturbed flow. Although the small-deformation theory discussed in Q 3 applies to 
this general flow situation, most calculations in this paper are restricted to the 
axisymmetric extensional flow 
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where the + sign corresponds to a uniaxial extensional flow and the - sign 
corresponds to a biaxial extensional flow. 

The interfacial tension CT depends on the surface concentration r* of surfactant, 
which generally acts to lower the interfacial tension, and is given by an equation of 
state of the form 

g = g(r*). (3) 

The surface concentration r* is specified in units of mass of surfactant per unit of 
interfacial area. If the surfactant is present in dilute concentrations, then a linear 
relationship exists between CT and r*, in which case (3) is typically written as 
(Adamson 1976) 

g,-g = T = T*RT, (4) 

where 7r is known as the ‘spreading pressure’, R is the gas constant, T is the absolute 
temperature and CT, is the interfacial tension of the clean interface (pure solvent). 
This simple equation of state has been used widely by previous researchers for 
examining the effects of interfacial tension gradients on the drag and interface 
mobility of rising drops, etc. Because of the form of this equation, (4) is often called 
the two-dimensional gas law. Other relations between CT and r* are possible, For 
example, in order to account for non-ideality (e.g. the finite area occupied by the 
surfactant molecules in addition to intermolecular forces), versions of (4) similar to 
the well-known van der Waals equation of state are written as 

(7r+$) ( A  -Ao) = RT, 

where A represents the area per molecule, A = l/r*, Ao.is the excluded area per 
molecule and v accounts for the attraction between surfactant molecules (Adamson 
1976). Clearly, the more complicated the equation of state, the more parameters are 
necessary to completely specify the problem. Therefore, we restrict ourselves to the 
linear equation (4). 

To complete the problem formulation, we require boundary conditions a t  the 
interface. For the velocity field, these conditions are continuity of velocity 

u = l i  for x,ES, (6) 

the kinematic condition dx, = n(u-n) ,  (7)  dt 

and the stress balance, which may be written in the dimensionless form 

I n  these equations, T is the stress tensor, x, represents a point on the fluid-fluid 
interface S ,  n is the unit outward normal directed from the droplet phase to the 
continuous phase (see figure i ) ,  V , . n  is the mean curvature of the interface, V, is the 
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FIQURE 1. Schematic of the problem and definition of variables. 

surface gradient operator (V, = ( / - n n ) - V )  and h = @/p denotes the viscosity ratio of 
the two fluids. The interfacial tension u is given by (4), with the surface concentration 
non-dimensionalized using the uniform concentration r,, which exists on the 
interface in the absence of any flow. Letting r= T*/T,, equations (4) and (8) lead 
to 

n. T-An-  T = ~ ( l - " n ( V , . n ) + - v , r  for ~ , E s .  

Here we have introduced Cs = pGa/u, and @ = r, RTIu,. C, is the capillary number 
based upon the interfacial tension for an uncontaminated interface and @ is a 
physicochemical parameter that determines the sensitivity of the interfacial tension 
to changes in surfactant concentration. The capillary number C, is the appropriate 
dimensionless measure of viscous forces relative to interfacial tension forces based 
upon the interfacial tension us for the clean interface without surfactant. The 
interfacial tension with surfactant present is u,(l -Po, so that 

(9) 
P 

@S C, 

Hence, in the absence of flow, the uniform surfactant concentration r, decreases the 
surface tension to u* = a,(l -P). This shows that p is bounded by 0 < P < 1. 
Further, it suggests that it may be useful to consider the capillary number based 
upon the equilibrium interfacial tension u* rather than us. This capillary number is 
denoted C* where C* = C,/(l-P). 

In  assessing the influence of surfactant in the present problem, there are two 
baseline cases to consider. The first point of view is to compare all results with the 
behaviour of the same drop but with an uncontaminated interface. In  this case, the 
dominant effect of surfactant in most instances is to decrease the interfacial tension 
from G, to u* with the influence of fluid motion leading to values above or below u* 
depending on the surfactant concentration r, which lies in the range 0 < r < p' (the 
upper limit represents CT = 0). The alternative point of view is to compare the results 
accounting for interfacial tension gradients with the results that would be obtained 
for the same drop but with an interfacial tension that remains constant a t  the value 
us( 1 -P),  which represents the uniformly contaminated surface a t  the initial 
equilibrium concentration, r = 1. From an experimental standpoint, the latter 
description is perhaps the most natural one. For example, in order to predict the 
behaviour of a two-fluid system, one would measure the equilibrium value for the 
interfacial tension (without any consideration of interface contamination), and then 
use this value together with the critical capillary number for a clean system to 
predict the critical flow conditions for breakup. Within this framework, it is only the 
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differences in the critical capillary number produced by flow-induced surfactant 
concentration changes that one would need to be concerned with. 

In  this paper, we adopt the latter point of view. Thus, we express all results in 
terms of the capillary number C* based upon g* = as(l-P). It is important to 
remember that the reduction in interfacial tension from v, to (T* is thereby built in 
to the description of surfactant effects. 

Using the uniformly contaminated interface as the reference state, i t  is convenient 
to express r as 

so that r represents the local deviation of surfactant concentration from the 
uniformly coated interface. Substituting (11) into (9), we then obtain the stress 
balance in the form 

r= i+r, ( 1 1 )  

- 1  
n -  T - A n .  T = ,n(V,.n)- c 

The first term on the right-hand side of (12) is the usual capillary contribution to 
the normal stress balance based upon the effective capillary number C* = C s / (  1 -P) .  
The last two terms on the right-hand side of (12) represent the effects of flow-induced 
changes in surfactant concentration. The first of these appears in the normal stress 
balance and, crudely speaking, may be thought of as a direct influence on drop shape 
due to the variation of interfacial tension from its original uniform value. The second 
term in brackets in (12) appears in the tangential stress balance and is thc Marangoni 
contribution to this problem. 

From (12) we may conclude that changes in drop shape as a result of changes in 
surfactant concentration may be neglected if 

On the other hand, the Marangoni contribution to (12) cannot generally be neglected 
unless 

which is much more restrictive than (13) for the small capillary numbcrs studied 
here. Of course, (14) assumes that the characteristic lengthscale remains a ,  an 
assumption that is likely to break down when large local gradients in r occur (i.e. 
large Pkclet numbers; see (16)) or the drop becomes highly deformed. 

We have already noted that the interface mobility and the flow-induced changes 
in the drop shape will lead to a non-uniform distribution of surfactant along the 
interface. The changes in surfactant Concentration a t  a phase interface are governed 
by a time-dependent convective-diffusion equation that may be written in the 
dimensionless form (Aris 1962; Waxman 1984; Stone 1990) 

Here, us represents the velocity vector tangent to the interface (us = ( / - n n ) . u )  and 
j, represents the dimensionless net flux of surface-active material to and from the 
interface from either of the bulk phases. For the case of insoluble surfactant to be 
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studied here, j, = 0. The importance of convection relative to diffusion is measured 
by a surface PBclet number 

Ga2 
P, = ~ 

9, 
where 9, is the surface diffusivity. The fourth term in (15) is a source-like 
contribution to the surface convective-diffusion equation that accounts for changes 
in the local surface concentration due to stretching and distortion of the interface 
(i.e. the total interfacial area changes as the drop deforms) and appears simply as the 
product of the normal velocity and the local curvature. 

For some physical situations it is convenient to consider changes in drop shape 
produced solely by increases in the local shear rate G .  In such instances, rather than 
choosing @* and P, as the independent dimensionless parameters, it is useful to define 

r*a 
Y=- 

@S 

so that P, = yC* and y depends on material properties only ( y  appears analogous in 
some ways to a Prandtl number). Then, drop deformation is solely a function of the 
dimensionless shear rate @* for a given constant y and p. 

Thus, finally, the problem is to solve equations ( 1 )  subject to conditions (6), (7),  
(12) and (15). These equations clearly indicate the difficulty in solving problems 
where surface-active agents are important. Determination of the interfacial velocity 
field requires knowledge of the distribution of surfactant which, in turn, necessitates 
knowledge of the interfacial velocity field. The free-boundary character of this 
problem is an additional non-trivial complication as the interface location is a priori 
unknown and must be found as part of the solution to the problem. 

In this paper, we consider an initially spherical drop with uniformly distributed 
surfactant, concentration r, (i.e. a dimensionless initial concentration r = l),  in an 
extensional flow. Our goal is to understand the coupled effects of @* (or C,), y (or Ps) 
and p. In  the next section, we briefly consider the small deformation of a drop, 
including interfacial tension variations associated with surfactant gradients caused 
by the flow. Following this, we consider numerical calculations based upon the 
boundary-integral technique for finite deformations. As discussed by Rallison (1981), 
calculations with h = 1.0 are much simpler than other values of A, but still provide 
qualitative insight into the behaviour for most viscosity ratios. Thus, we limit our 
numerical calculations in this paper to h = 1.0. The numerical method for solving 
this problem is outlined in $4. 

Finally, for the modest deformations studied in this paper, the degree of drop 
deformation is characterized using the deformation parameter D = (L -B)/(L +B),  
where L and B represent the half-length and half-breadth of the drop, respectively. 

3. Small-deformation analysis 
In  this section we summarize analytical results for the small deformation of a drop, 

accounting for surfactant effects. The results are useful both as a check on the 
numerical calculations and as a guide to physical insight into the initial effects of 
surfactants. The analysis is similar to the work of Flumerfelt (1980) who considered 
surface shear and dilatational viscosity, as well as interfacial tension variations, 
including mass transfer from the bulk but neglecting surface diffusion (limit P, --f co). 
Here we only consider gradients in r, allow for surface diffusion of surfactant 
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(although analytical results are restricted to small surface P6clet numbers), but 
neglect interphase mass transfer. The analysis follows well-known small-deformation 
studies for nearly spherical drops (e.g. Cox 1969) so we simply summarize the 
important results for this study. 

Both the drop radius and surfactant concentration are assumed to be only slightly 
perturbed from their equilibrium values. For a linear flow field gencrated by a 
second-order tensor, the first corrections to the description of the surface shape and 
the nearly uniform surfactant distribution are also expected to be described by 
sccond-order tensors, which may bc taken, without loss of generality, to be 
proportional to E. So, 

x - E - x  
r = 1 +@*b,(t)- (18a)  r2 

The coefficients b,(t) and b,(t) describe the time-evolution of the shape and surfactant 
distributions. The dependencies on @* and P, = yC* follow from analysis of the 
normal stress balance (e.g. equation (12)) and the surface convective-diffusion 
equation, respectively. Details of the small-deformation analysis, including deter- 
mination of the velocity field, are given in the Appendix. The analysis assumes 
that C* 4 1, y = O(l)(Ps 6 1 )  and h = O(1). Also, it  may be noted that here the 
precise form of the constitutive equation (4) does not matter, but rather, for the 
nearly uniform surfactant distributions assumed in this analytical approximation, 
only the linearized version of the constitutive equat'ion is relevant. We find that the 
steady-state solution for the drop deformation is given by 

b = -  5 ( 16 + 19h) + 4/37/ ( 1 - /3) 
4 10(1+h)+2/3y/(l-/3) ' 

so that the deformation parameter D describing the small deviations from a spherical 
shape is 

3C*b, 
4 + @*b, 

D %  

Also, the steady surfactant distribution is given by 

5 
b -  
- i O ( 1  + A )  +2/3y/(l -/3) . 

Clearly, (19) reduces to the classical Taylor result in the limits /3+0 or y+O. These 
limits correspond, respectively, to the physical situations where either there is no 
effect of surfactant on the interfacial tension or where surfactant gradients do not 
arise, because the surface concentration is dominated by diffusion. 

We note that the drop deformation increases as the magnitude of b, increases. 
Hence, for a given linear flow, the deformation increases if either y (or 8) or /3 is 
increased at a fixed dimensionless shear rate @*. For the small-deformation analysis, 
the effect of surfactant convection appears via the combined parameter /3y/(l -p), 
which is proportional to the magnitude of the interfacial tension variations at  this 
order of approximation. The physical mechanism for the increase in deformation is 
that the flow convects surfactant toward the end of the drop, resulting in a higher 
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surfactant concentration and lower interfacial tension. This, in turn, requires larger 
deformations to balance viscous forces. It is perhaps worthwhile to  repeat the 
statement that  this increase in deformation is relative to the drop shape with uniform 
surfactant concentration, r = 1. Drop deformation would also increase, at a fixed 
shear rate G ,  owing to the decrease in interfacial tension from the clean surface value 
vs to the equilibrium value v* = 6,(1 -P),  but this is incorporated into the definition 
of the capillary number @*. Equation (20) will be compared with numerical solutions 
in 55 (figure 3) and we shall see that this mechanism for increased deformation 
remains dominant even in some of the finite-deformation cases. 

We also note that the time-dependent evolution of nearly spherical drops in steady 
linear flows can be calculated as shown in the Appendix. A second-order ordinary 
differential equation with constant coefficients is obtained for b,( t )  : 

(2h+3)(16+19h)( l -P)  @*2 T d2b 
2P dt2 

3(2h+3)(16+19h)( l -P)@* 20 db +- (1 + A )  (1 -p) C* + (32 + 2 3 4  @*I$ 
PY P 

A similar equation is found for b,(t). It can be shown that the characteristic equation 
derived from (22) has two real negative roots. Hence, beginning with a spherical drop 
and uniformly distributed surfactant, we find that both the drop shape and 
surfactant distribution monotonically approach the final steady state a t  an 
exponential rate. In  particular, there are no oscillations and, clearly, the (two) 
characteristic rate constants are dependent on both the characteristic dimensionless 
deformation timescale (C*) and the dimensionless convectivediffusion timescale 
(ye* = P,). However, because these time-dependent results are limited to almost 
spherical distortions, the practical utility of the quantitative details in (22) are 
limited. 

4. Numerical method/implementation 
The analysis summarized in the preceding section is limited to small deformations 

from the spherical state. In  this section, we discuss a numerical procedure to solve 
the coupled free-boundary and surface transport problem for moderate and large 
deformations. 

In 54.1 we describe the calculation of the interfacial velocity and outline the 
procedure used to discretize and represent the drop surface. The surfactant 
convective-diffusion equation is examined in detail in $4.2 and is simplified to a form 
suitable for this axisymmetric problem. The coupling of the unknown drop shape and 
the evolving surfactant distribution makes solution of the simultaneous system of 
equations extremely difficult, so in 54.3 we outline an approximate procedure for 
solving the problem. 

4.1. Calculation of the surface velocity using the boundary-integral method 

The boundary-integral method is an efficient technique for solving Stokes flow 
problems. It is particularly well suited for free-boundary studies since only the 
boundary of the domain must be discretized and the interfacial velocity is calculated 
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directly. The first application of the boundary-integral method to studies of droplet 
deformation was described by Rallison & Acrivos (1978) and, since that time, the 
technique has been used by many investigators for a wide range of free-boundary 
studies. For example, in our research group the motion of a sphere normal to  a 
deformable fluid-fluid interface has been discussed by Lee & Leal (1982) and Stoos 
& Leal (1989), and the mechanism of drop breakup has been investigated by Stone 
& Leal (1989). Also, the method has been applied to drop deformation and breakup 
in electric and magnetic fields by Sherwood (1988) and to problems of cell 
deformation by Li, Barthes-Biesel & Helmy (1988) and Zinemanas & Nir (1988). An 
investigation related to the work reported here is the numerical study by Ascoli & 
Leal (1990) of drop migration normal to a solid planar wall due to a temperature 
gradient. 

Following the procedure of Rallison & Acrivos (1978) and making use of the stress 
boundary condition (9), the interfacial velocity u ( x s )  can be written as 

- ( l - A ) s  n . K - u d S ( y ) ,  (23) 
S 

Here y is the integration variable and u, is given by (2). 
This integral equation of the second kind highlights the principal advantage of the 

boundary-integral method, namely that it is only necessary to  compute two- 
dimensional surface integrals rather than performing calculations over the entire 
three-dimensional fluid domain. Once the interfacial velocity is determined the drop 
shape can be updated using the kinematic condition. Clearly, the surfactant 
contribution to the problem directly enters (23) only through P. It should be recalled, 
however, that  the capillary number @*, which we treat as an independent parameter, 
also contains implicitly the decrease in interfacial tension from as to as( 1 -p) due to 
the addition of surfactant. More general equations of state other than the linear form 
(4) alter equation (23) only slightly. Hence, once an equation of state is chosen, the 
solution of (23) is no more difficult for more complicated equations of state. However, 
in this study, we shall only examine the linear relation discussed in $2. 

The solution of this integral equation for the interfacial velocity must be 
accomplished numerically. The approach taken is to  first discretize the interface, 
write the integral equation a t  each node point and reduce (23) to an equivalent set 
of linear algebraic equations that is straightforward to solve using Gaussian 
elimination. Assuming for the moment that the surface concentration r and drop 
shape are known, there are three important aspects necessary for an accurate 
numerical solution of this integral equation: (i) the geometry must be accurately 
represented so that the interface curvature, which involves second derivatives, can 
be computed; (ii) the functional representation must be chosen for the variation of 
the unknown velocity field u(x,) over each surface element; and (iii) accurate 
evaluation of integrals is required, including careful resolution near the singuiar 
points y + x ,  where the kernels J and K are singular, although the integrals 
themselves are integrable in the sense of a Cauchy principal value. 
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We have dealt with the above difficulties in a previous investigation of the breakup 
of highly elongated droplets (Stone & Leal 1989). The results of that study give us 
confidence that the numerical aspects of the problem are well resolved. Here we 
simply summarize our approach. 

We only consider axisymmetric drop shapes. Referring to  the cylindrical 
coordinate system shown in figure 1, the azimuthal integration in (23) can be 
performed analytically. This reduces the surface integrals to line integrals. Then, the 
interface is discretized into 2N- 2 boundary elements with node points placed a t  the 
end of each element, and u(x,) is assumed to vary linearly over each element. At each 
node point there are two unknown components of the interfacial velocity vector (u7, 
uz). The interface location is parametrized using a normalized measure of arclength 
s (0 < s < 1). In this case, the surface collocation points are labelled using cylindrical 
coordinates ( r , z )  and cubic splines are used to generate twice continuously 
differentiable representations for r = ~ ( s )  and z = z ( s ) .  These cubic spline rep- 
resentations are used to calculate the unit normal n and the curvature V,-n along the 
interface. Finally, because of the fore-aft symmetry of the flow fields, the drop 
shapes and the surfactant distributions considered for the numerical aspects of this 
paper, the number of unknowns in the linearized form of (23) is halved and a 2N-2 
system of equations and unknowns is solved using Gaussian elimination. However, 
the calculations reported in this paper are for h = 1 only, which is considerably 
simpler as no matrix inversion is required. 

4.2. Calculation of the surfactant distribution 
We first make some general remarks concerning the general form of the 
convective-diffusion equation ( 15) appropriate for a two-dimensional surface 
imbedded in a three-dimensional space. Time-dependent effects are also incorporated, 
including changes in drop shape. In  general, the two-dimensional surface can be 
represented by x, = xs(vl, v2, t ) ,  where the va represent coordinates fixed in the 
surface. For a discussion of the differential geometry of surface coordinates the 
reader is referred to McConnell (1957), Aris (1962) and Waxman (1984). The 
convection term in (15) can be written using index notation and the summation 
convention as 

where the surface velocity us is defined with respect to  the surface base vectors a, as 

ax 
ava 

us = uaa,, a, = 2 (a  = 1,2) 

and a is the determinant of the surface metric tensor. A differential element of surface 
is related to a and differential changes in the surface coordinates by 

dS = &dv' dv2. (26) 

The surface Laplacian can be written as 

where aap are the surface covariant components of the surface metric tensor. 
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Using the above relationships the convective-diffusion equation (15) may then be 
written in the more compact form 

A similar development has been discussed by Zinemanas & Nir (1988) in a numerical 
study of cell deformation. 

I n  general the drop surface can be parametrized using the orthogonal surface 
coordinate system (s, 8)  where 8 is the azimuthal angle (0 < 8 < 2n) and s is the 
normalized measure of arclength introduced in 54.1 (see figure 1).  In this 
axisymmetric problem, (28) reduces to 

The time-dependent metric a is given in cylindrical coordinates by 

and 

Since the surface base vectors aa are not in general unit vectors, the surface velocity 
us in (29) is related to the tangential velocity component u(x,) . t  = u” calculated 
using the boundary-integral technique described in $4.1 by (t denotes the unit 
tangent vector to  the surface) 

Therefore, we can write (28) in the relatively simple form 

us = (all)t*. 

+f(V,*n) (u*n) = 0. (30) 

This is the proper form of the convective-diffusion equation for transport on the 
axisymmetric surface, including effects due to the change in shape of the interface 
with time. In  order to solve (30) numerically it is convenient to write it as 

where the coefficients Ai depend on the surface velocity, surface shape and the PBclet 
number. 

To actually calculate the surfactant distribution, T ( s ,  t+  At) ,  we assume, for the 
moment, that the shape a t  t + A t  and T ( s ,  t )  is known. Then, r is discretized using 
the grid introduced in $4.1 to describe the drop surface, (31) is written in finite- 
difference form and r is assumed to vary quadratically between node points. 
Therefore, if ri denotes the surfactant concentration at node point i, W/as and 
a2r/as2 at each collocation point can be written in terms of Ti-1, ri and ri+l. 
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Equation (31) is then written in implicit form at  each node point, and the tridiagonal 
linear system of equations that is produced for the surfactant distribution is solved 
using standard methods. This procedure yields the approximate surfactant 
distribution a t  time t + At. 

4.3. Summary  of numerical solution scheme 

The problem that we wish to solve numerically consists of the discretizcd versions of 
(23), (31) and the kinematic condition (7).  The primary difficulty is that these 
equations are highly coupled. We employ a relatively straightforward, time- 
marching scheme to solve the problem. 

The basic sequence of steps is as follows: 
(a )  For a given shape a t  time t ,  calculate the interfacial velocity from (23) and 

update the shape to time t+At using (7). 
(b)  Using the known shape a t  t+At, update the surfactant distribution from r ( t )  

to  T(t+At) using (31). 
( c )  Return to (a ) .  

This procedure is initiated by beginning with the surfactant uniformly distributed on 
a spherical shape. 

A few additional remarks are necessary to complete and further explain this 
description of the numerical procedure. The interface shape is updated by integration 
of the kinematic condition (7)  using an explicit Euler method. I n  order to determine 
T(t+At)  on this shape, the convective-diffusion equation (31) is solved using an 
implicit Euler method as outlined in $4.2. However, because the velocity field 
corresponding to this new shape is not known, we assume that the velocity field a t  
any node point a t  t + At is well-approximated by the velocity a t  the same node point 
a t  time t . t  Clearly, this is not exactly correct. However, for the small time steps used 
in this study, the interface evolves very slowly and this method provides a very good 
approximation to the convective term in (30). The basic idea is that the evolution of 
the shape and concentration field from one steady state to another occurs on a long 
timescale relative to the time step At. An obvious improvement of this method would 
be to use the new velocity field in an iteration scheme to determine the concentration 
field for a given shape. However, since the explicit/implicit procedure described 
above is convergent when the (small) time step is decreased (see $5.1) we have not 
tried to refine it further. 

We should add that the same step-wise procedure was used in an attempt to solve 
the convective4iffusion equation (31) using an explicit Euler method. The numerical 
solution in this case proved to be very unstable. Using the implicit procedure 
provided a very stable and smooth solution. 

Steady-states solutions are calculated by marching along until the normal velocity 
is very small (typically lu-nl < 2 x at each collocation point and the surface 
concentration a t  any node point changes by a negligible amount between two time 
steps (typically changes in r a t  a fixed s are less than Typically, we choose 
N = 15-20 node points and a time step At = 0.0002-0.005. The numerical procedure 
can be monitored as time progresses by following the change in volume of the drop 
and the change in the total amount of surfactant, which must remain constant for 
the case of an insoluble surfact,ant. Typically, volume changes are less than one 
percent for several thousand iterations. Changes in the total amount of surfactant 

t Because a normalized measure of arclength is used to  describe the surface, and node points are 
always maintained evenly redistributed, throughout the calculation node points correspond to  the 
same value of the normalized surface coordinate. 
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are about one percent every thousand iterations and, consequently, aftcr each time 
step the local surfactant concentration is rescaled in order to maintain the total 
amount of surfactant constant. Similar difficulties and corrections have been used by 
previous researchers. 

5. Results 
In  this section we discuss the numerical simulations performed in order to 

characterize the effects of surfactants on drop deformation in extensional flow fields. 
The results indicate that the numerical procedure described in 94 can resolve finite 
deformation and the evolution of the surfactant concentration, both features which 
are necessary for improved physical insight into the drop breakup process. 

5.1. Convergence of the numerical method 
The numerical method has been tested by ( i )  decreasing the magnitude of the time 
step and comparing the calculated steady-state shapes and surfactant concentration 
distributions a t  different capillary numbers and (ii)  comparing the numerical 
calculations with the analytical results presented in $3.  

First, we consider convergence of the numerical scheme by decreasing the 
magnitude of the time step. In all cases, for the small time steps used here, the results 
obtained using one value of the time step are identical with the results obtained when 
this value is halved. For example, in figure 2, we show the stready-state drop 
deformation D as a function of the capillary number C* for the case p = 0.5 and 
y = 10. The open squares are the numerical results using a time step At = 0.001 and 
incrementing the capillary number between steady states by AC* = 0.01 ; the crosses 
are the numerical results with At = 0.002 and AC* = 0.02. In both simulations the 
numerical procedure smoothly approaches the same sequence of steady shapes. Also, 
the concentration profiles at the same stages of the deformation are identical. These 
results are typical of the numerical simulations for the parameter range studied in 
this paper. 

The predictions of the small-deformation analysis, valid only for small PBclet and 
capillary numbers, are shown as the symbols in figure 3(a ,  b ) ,  relative to the 
numerically calculated solid curves. A detailed discussion of these figures is delayed 
until $5.3. Here, we simply note that the analytical results are only useful for very 
small distortions and underpredict the finite-deformation results. This feature of the 
small-deformation analysis severely limits quantitative predictions with regard to 
finite deformation and possible breakup. 

With the level of accuracy discussed above, we use the numerical method in 
§$5.2-5.5 to examine the effects of p, y and C* on finite drop deformation. 

5.2 .  An overview of the competing physical processes 
Since a proper account of drop deformation and breakup in the presence of 
surfactants requires an understanding of coupled, competing effects, we are taking 
the unusual approach of briefly presenting our conclusions prior to discussing the 
numerical results. The two principal competing effects associated with surfactant 
changing the interfacial tension relative to the uniform equilibrium value CT* are : (i) 
convection of surfactant, previously indicated in the small-deformation analysis, 
which lowers u near the end, so tends to  produce larger distortions and (ii) dilution 
of surfactant due to increasing interfacial area of the deformed drop. This latter 
effect increases u, and so acts opposite the convective transport of surfactant. 
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FIGURE 2 .  Testing of the numerical procedure. Effect of decreasing the time step from 0.002 (x) to 
0.001 (0) and simultaneously changing the increment in capillary number from 0.02 (x) t o  0.01 
(0). The numerical scheme converges t o  the same sequence of steady shapes. /3 = 0.5, y = 10. 

@* 

The influence of surfactants for a fixed value of @* depends on the two parameters, 
/3 and y. As an example of the complicated interplay that may occur consider effects 
associated with variations of /3. The parameter /3 provides a measure of the 
senvitivity of u to changes in surfactant concentration so that increasing p for a fixed 
distribution of surfactant leads to larger interfacial tension gradients. This, in turn, 
produces lower interfacial tension near the end of the drop, which suggests larger 
distortions. Nevertheless, €or finite deformations, we observe two further coupled 
responses associated with increasing tangential stresses : (i) as mentioned above, 
increases of interfacial area dilute the surfactant and increase u, hence tending to 
counteract decreases in u produced by the convective effects ; (ii) increased interfacial 
tension gradients inhibit surface advection and, consequently, surface diffusion acts 
to produce a more uniform surfactant distribution, a response that also acts to 
counter the convective effects. In  other words, owing to tangential stresses, the 
effective surface PBclet number is actually decreased by an increase in p even though 
P, = yC* is held constant. 

In  a similar manner, increases in y for fixed /3 increase the surface PBclet number 
so that larger surfactant gradients result. Again, this response is counteracted by 
dilution and Marangoni inhibition (the tangential stresses) of surface transport. In 
the remaining sections we illustrate these competing influences of surfactants on the 
drop breakup problem. 

5.3. Evolution of the drop shape and concentration proJiles. 
We begin this discussion of the numerical results by presenting typical steady 
deformation results, D versus @*, for several combinations of y and p. A systematic 
study, varying y for fixed p, or varying p for fixed y ,  will be summarized in $5.4. In  
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FIQURE 3. Steady-state deformation D as a function of capillary number. (a) y = 0.1, /? = 0.5; (b)  
y = 10, = 0.1 ; (c) y = 1000, /? = 0.3. The solid line is the numerical calculation with surfactant 
present and the dashed line is the same drop with the interfacial tension maintained at its initial 
equilibrium level. The symbols denote the small-deformation prediction. The inset illustrates the 
surfactant concentration profile r as a function of axial position z a t  intermediate stages of the 
deformation. 

C* 

figure 3(a-c) we illustrate the drop shape evolution for (a )  y = 0.1, p = 0.5, (b)  y = 
10, p = 0.1 and (c )  y = 1000, /3 = 0.3. The symbols denote the predictions of the 
small-deformation analysis, the solid lines are the numerical calculations with 
surfactant and the dashed lines are the same drop, but with the surface tension 
maintained a t  the initial equilibrium value. Clearly, differences between the solid and 
dashed lines represent the combination of effects due to flow-induced dilution and 
surfactant gradients, The numerical calculations are carried out by incrementing the 
capillary number until no steady shape exists and the drop undergoes a continuous 
stretching motion. Also shown in figure 3 are several numerically generated drop 
shapes. The inset to each of the figures illustrates the evolution of the surfactant 
concentration profile, presented as concentration r versus axial position z along the 
drop, a t  intermediate stages of the deformation process. Finally, recall that a 
simulation holding y ,  p fixed and increasing @* physically corresponds to an 
experiment where the shear rate is increased incrementally in a quasi-steady manner. 
The PBclet number for these simulations is P, = yC* so, in principle, increasing @* is 
equivalent to increasing the importance of convection relative to surface diffusion as 
the deformation process proceeds. (Nevertheless, as discussed in $5.2,  it is important 
to remember that increasing P, tends to increase surfactant gradients, thereby 
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increasing the tangential stresses, which decreases surface velocities, so that the 
effective Pkclet number for surface transport may not increase as quickly as simple 
estimates would suggest.) 

In  figure 3(u) ,  y = 0.1, p = 0.5, the PBclet number remains small (<  lo-') 
throughout the calculation and, as shown by the inset, the dominance of surface 
diffusion has the effect of maintaining a nearly uniform surfactant distribution along 
the interface. Hence, as the drop is distorted by the flow with a consequent increase 
in interfacial area, the surfactant is diluted, the surfactant concentration decreases 
and the interfacial tension increases. For the largest steady deformations achieved, 
the surfactant concentration has decreased almost 10 YO from its uniform initial 
value, and this corresponds to x 10% increase in the interfacial tension. This, in 
turn, requires a 10 YO increase in shear rate to produce the same deformation as would 
be obtained for the drop with a uniform distribution of surfactant a t  the initial 
equilibrium concentration. This fact explains the larger critical value of the capillary 
number that is necessary to reach the unsteady stretching mode, C,* % 0.13. 

Since the surfactant concentration remains uniform for this case, the only 
difference between the two sets of numerical results is a shift in the effective capillary 
number due to the increase in interfacial tension, relative to the initial equilibrium 
value, associated with the increase in surface area. Thus, the drop shapes a t  any fixed 
value of D are identical and this includes the maximum steady deformation a t  the 
critical capillary number. Hence, for the diffusion-dominated regime a t  low surface 
PBclet numbers (and p < 0.5), the interaction between the surfactant and the flow 
leads to an increase in the critical capillary number for breakup @,* relative to the 
value that would be predicted based upon the initial equilibrium value of CT*, and in 
this sense the presence of insoluble surfactant may be viewed as stabilizing for drop 
breakup. It must be remembered, however, that the addition of surfactant leads to 
a large decrease in the equilibrium value of r* relative to the interfacial tension for 
a clean interface, and the critical strain rate for breakup will still be decreased by a 
large amount compared to its value with no surfactant present. It should also be 
noted that as /3 is increased further, more extended steady shapes become possible 
owing to the existence of significant tangential Marangoni stresses (e.g. see (l4)),  thus 
substantially increasing the dilution effect and the critical capillary number for 
breakup (see figure 6). 

The case of Ps x 1 is considered in figure 3 ( b )  for y = 10, /3 = 0.1. As the Pkclet 
number is now O( I )  throughout most of the deformation process, large variations in 
surfactant concentration occur between the end and the centre of the drop (see inset). 
For the largest steady deformation calculated, the surfactant concentration is about 
30 YO higher at the end than the initial value. In  general, these surfactant gradients 
would be expected to lead to significant variations in interfacial tension, and thus to 
discernable differences in drop shape and the dependence of deformation on @*. 
However, in this simulation, /3 is small, and the changes in surface tension are only 
about 3 % relative to the initial value for the uniformly contaminated surface. As a 
consequence, the deformation curve and the critical capillary number necessary to 
produce unsteady stretching associated with the first stages of drop breakup are 
indistinguishable from the uniformly contaminated case shown as the dashed line. 
Later, we shall see that significant differences will become apparent a t  the same value 
of y ,  but larger values of p. 

The final case illustrated, figure 3 ( c ) ,  shows typical results when y is large so that 
the PBclet number is effectively O( 100) throughout most of the deformation process. 
In  this figure the numerically calculated deformation curve clearly indicates a 
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significantly larger deformation than the equivalent drop with a uniform surfactant 
distribution a t  the initial equilibrium level. The increased deformation is simply due 
to large convective effects transporting surfactant toward the end of the drop, 
thereby lowering interfacial tension, hence requiring increased deformation to satisfy 
the normal stress balance. This influence of surfactants was suggested by the small- 
deformation analysis of $3. Comparing the two curves in figure 3 ( c ) ,  the influence of 
surface tension gradients has decreased the critical capillary number for breakup by 
about 10 %, even though the interfacial tension near the end is more than 15 YO below 
its initial value on the spherical drop. Finally, we note that Smith & van de Ven 
(1985) observe greater drop deformation in shear flows when surfactants are present, 
relative to the uniform interfacial tension case, which is in qualitative agreement 
with the large-y numerical calculations reported here. 

5.4. The effects of y and p 
In  this section, we present the results from a systematic investigation varying the 
physicochemical parameter p for fixed values of y and varying y for fixed values of 
p. Once again we show curves of D versus @*, continued until the drop begins to 
undergo a continuous extension characteristic of the first stages of drop breakup. It 
is difficult to make general statements about the independent influences of p, y since 
both parameters affect the magnitude of the tangential stress gradients. This in turn 
affects the magnitude of the interfacial velocity which is, of course, coupled with the 
tangential stress variations since the interfacial velocity determines the relative 
magnitude of convection to diffusion along the interface. Nevertheless, several trends 
concerning drop breakup are identified as were discussed in $5.2.  

The influence due to variation of the physicochemical parameter p for fixed values 
of y = 10 and 1000 is examined in figures 4(a),  and 4(6), respectively. The inset 
illustrates the concentration distribution as a function of axial position for the most 
highly deformed steady drop shapes calculated. For lower values of y ,  say y c 0.1, 
the surface PBclet number remains small for the values of capillary number 
representative of drop deformation in uniaxial extensional flows and the surfactant 
remains uniformly distributed. In  such instances, at  least for small p, the primary 
effect of surfactant is to modify the interfacial tension, and the critical capillary 
number for breakup may be predicted from the clean interface calculations, with 
account taken of the dilution factor due to increased surface area as the drop is 
deformed, as discussed for figure 3(a )  (see also figure 6). 

In  figure 4(a),  y = 10, we observe that the maximum steady deformation increases 
with increasing p. For large p values (p > 0.5), we further observe that because of the 
interfacial area increase, and in spite of the convective effects, the surfactant is 
diluted so that the surfactant concentration everywhere along the interface is 
eventually lower than the initial concentration. Hence, this dilution leads to larger 
interfacial tensions than present on the initial spherical drop and the critical 
capillary number increases beyond na'ive estimates of breakup based on the 
interfacial tension of the uniformly coated spherical surface. We also observe that a 
related role of the existence of tangential stresses and surfactant gradients is to allow 
highly deformed steady shapes, D x 0.5 ; such large distortions are only observed in 
the absence of surfactants if the viscosity of the droplet is much lower than the 
suspending-fluid viscosity. 

In figure 4 ( b ) ,  y = 1000, the behaviour is similar. These simulations correspond, at 
least in principle, to large surface PBclet numbers. The curve labelled ( a )  shows that 
low values of p lead to significant variations in surface concentration, from almost 



180 

0 

0.5 

0.4 

0.3 

D 

0.2 

0.1 

0 

H .  A .  Xtone and L. G .  Leal 

0.04 0.08 0.12 0.16 0.20 
c* 

0 0.4 0.8 1.2 1.6 2.0 // / 

1 
1 1 1 

0.04 0.08 0.12 0.16 
c* 



Effects of surfactants on drop deformation and breakup 181 

0 0.03 0.06 0.09 0.12 

c* 
FIGURE 5 .  The result of varying y for a fixed value of ,9 = 0.5. Curves a-c correspond to y = 0.1, 
10,1000, respectively. The inset illustrates the concentration profiles for the most highly deformed 
steady shapes calculated. 

zero near the drop midsection to r x 5 near the end of the drop. The curves for ,8 = 
0.1,0.3, are practically indistinguishable and breakup occurs a t  approximately the 
same @*, D, which, as we saw in figure 3 ( c ) ,  is at a slightly lower capillary number 
than the same drop maintained at its initial interfacial tension. This is a direct 
consequence of convection of surfactant producing low interfacial tensions near the 
end of the drop ; indeed, interfacial tensions are lower than their initial value over 
almost half of the drop surface. However, further increases in ,8 lead to more uniform 
surfactant distributions, large steady deformations and also substantial increases are 
observed in the critical capillary number necessary for breakup. 

In  both figures 4(a) and 4 ( b )  we observe that, as B increases, the gradient in the 
surfactant concentration near the end of the drop decreases substantially. For p > 
0.5, even in the case of large y ,  there is only a small difference between the 
concentration at  the end of the drop and the concentration along the drop midsection. 
On the other hand, for small ,8 and large y ,  figure 4 ( b ) ,  we see very large 
concentration variations near the end of the drop, as a surfactant concentration 
boundary layer forms due to the large convective effects. 

Finally, in figure 5 we examine the results typical of variations in y a t  a fixed value 
of p = 0.5. Qualitatively, these results are typical of other values of /3. Once again, 

FIGURE 4. The result of varying /3 for fixed values of y .  (a )  y = 10; curves a-e correspond to /3 = 
0.1,0.5,0.7,0.8,0.85, respectively; ( b )  y = 1000; curves a-f correspond to p = 0.1,0.3,0.5,0.7,0.8, 
0.85, respectively. The inset illustrates the concentration profiles for the most highly deformed 
steady shapes calculated. 
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the inset illustrates the concentration profile for the most highly deformed steady 
shapes calculated. This set of simulations corresponds to decreasing the surface 
diffusivity while maintaining all other parameters constant. It is clear from figure 5 
that as the surface diffusivity is decreased ( y  increases), the surfactant is swept to the 
end, lowering interfacial tension and consequently increasing deformation. Hence, all 
other parameters remaining fixed, the critical capillary number for breakup decreases 
as y increases. 

5.5. Critical capillary number for breakup 
We conclude our discussion by illustrating the critical capillary number for breakup 
(i.e. non-existence of a steady drop shape), C:, as a function o € p  and y.  The results 
shown in figure 6 are for 0 < p d 0.85 and 0.1 < y Q 1000 and summarize much of 
the previous discussion, a t  least insofar as the overall effects of ~3,  y on the critical 
shear rate are concerned. We remind the reader that the critical capillary number 
includes the decrease in interfacial tension due to the presence of surfactant a t  the 
uniform equilibrium concentration, f = 1. 

We see that for p < 0.5 there is only a small variation in Cf relative to the value 
a t  p = 0. In this small-p regime, the lower interfacial tension produced by the higher 
surfactant concentrations at  the end of the drop are roughly offset by dilution of 
surfactant. For small y there is actually a small increase in C: due to the dilution of 
the surfactant as the drop deforms and for large y there is a small decrease in Cf due 
to the convective effect. 

As p is increased above 0.5, we previously observed dilution of the surfactant to 
concentration levels below the initial concentration and this effect is even more 
pronounced since the complicated response to tangential stresses leads to large 
steady deformations. The increased values of the interfacial tension accompanying 
dilution lead to the sharp increase in C: shown in figure 6. We also clearly see that 
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for any ,(I, the critical capillary number for breakup is lower as y is increased (see 
figure 5 ) .  

6. Conclusions 
In  this paper we have examined drop deformation in extensional flows in the 

presence of insoluble surface-active agents. The analytical results are useful 
conceptually, but of limited practical value since they are restricted to small 
deformations. An approximate numerical scheme based on the boundary-integral 
method has been developed that is capable of analysing this time-dependent, coupled 
free-boundary/surfactant transport problem. The numerical simulations of finite 
deformation suggest that the two important, competing processes are convection of 
surfactant, which lowers interfacial tension and hence increases deformation (in 
agreement with an experimental observation of Smith & van de Ven), and dilution 
of the surfactant due to the increase of interfacial area that accompanies drop 
deformation. From the standpoint of breakup, for /3 < 0.5 there is only a small 
variation in the critical capillary number @: over all y values studied. However, 
significant increases in C,* are shown in figure 6 as /3 increases, owing to increased 
tangential stresses, larger steady deformations and the accompanying dilution of 
surfactant. 
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Appendix 
In  this Appendix we describe the solution to the time-dependent small deformation 

of a drop in a steady linear straining flow. The governing equations and boundary 
conditions were presented in $2. For the linear flow field u, = A x+  E . x ,  the first 
corrections to the description of the nearly spherical surface shape and the surfactant 
distribution (assumed nearly uniform) are expected to be of the form 

x * E * x  
r = 1 + @*b,(t) ~ 

r2 ' 

x . E . x  r= I+y@*b,(t)--- 
r2 ' 

where E is the rate-of-strain tensor, @* -4 1 and y = O(1). The appearance of the 
small parameter @* in (A 1) follows from the normal stress balance, while the 
appearance of the small parameter yC* = P, in (A 2), representing small surface 
PQclet numbers, follows from analysis of the surface convective-diffusion equation. 
As discussed by Rallison (1980), the analysis assumes h = 0 ( 1 )  since for large h the 
vorticity terms become important. 
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If we define the shape function as 

f = r-[l+C*b,(t) F] = constant = 0, 

then the unit outward normal to the (deformed) interface can be calculated from 

Hence, the local mean curvature of the slightly deformed drop shape is 

V - n  = 2+4C*b,( t )no.E~no (A 5 )  

where no denotes the normal to  the spherical surface. 

external to the spherical drop can be expressed in the general forms 
Using Lamb's general solution, the velocity and pressure fields internal and 

For the general time-dependent problem the coefficients c,, c,, c,, el, E,, Cn, are functions 
of time. I n  order to obtain a leading-order solution for the flow fields, the pressure 
distributions, the drop shape, and the surfactant distribution, we must apply the 
boundary conditions from $2. For nearly spherical shapes, we follow the standard 
procedure of domain perturbations, so that the leading-order solution is determined 
by evaluating all boundary conditions on the undeformed spherical surface, r = 1 
and x = no. 

Continuity of velocity u = 6 a t  the fluid-fluid interface yields 

1 + 2 ~ ,  = 26,+56,, - ~ c , + c ,  = -2E,, ;+c1 = tl. (A 10) 

Application of the kinematic condition u - n  = limn = dr/dt a t  r = 1, x = no yields 

db 
dt ' 

1 - 3 ~ , + ~ ,  = 2E2+3c", = @*> 

where, following Frankel & Acrivos (19701, we retain the time derivative a t  this 
order, thereby assuming C* db,/dt = O(1). The tangential stress balance gives 

2 - 16c2 + 2c3 - 4h(6, + 46,) = 2 - b, 
(1  -P)  

and c1 = 0+6, = f. (A 13) 

The normal stress balance includes both curvature variations (proportional to @*) 
and interfacial tension variations (proportional to yC* = Ps), so that 

2 + 2 4 ~ ,  - 6c, - h(46, - 36,) = 4b, - 2 - " b,. 
(1 - P )  
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The system of equations is completed by keeping the leading-order terms from the 
time-dependent surface convective-diffusion equation. If r denotes the deviation 
from the uniformly coated interface (r = 1 + r), then at leading order (15) gives 

a r  1 
-+V,.u,+(V,-n)(u-n) = -v,zr". 
at Y@* 

Using the above results and keeping all terms O(C*) we find that (A 15) yields 

db 
dt (6c",+ 1 5 6 , ) + 2 @ * 2  = -6b i-, 

db 

where we again retain time derivatives, which is self-consistent for both short times, 
t N O(C*) and long times (provided the deformation remains small). The third term 
in this equation describes local concentration changes due to the local contraction 
and stretching of the surface. We now have six equations for the six remaining 
unknowns. After some tedious algebra, a second-order differential equation is found 
describing the evolution of b,(t) (equation ( 2 2 ) )  and the steady-state result (equation 
(19)). Similarly, b,(t) satisfies 

( 2 h + 3 )  (19h+16) yC*';i;..[ d2b, 3@*(2h+ 3 )  (19h+ 16) + (32 + 2 3 h ) -  BY@* 
2 1-P 

] b r  = 60. (A 17) 
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